获取和读取数据集
比赛数据分为训练数据集和测试数据集。两个数据集的特征值有连续的数字、离散的标签甚至是缺失值“na”。只有训练数据集包括了每栋房子的价格,也就是标签。
通过pandas
库读入并处理数据。
1 2 3 4 5 6 7 8 9 10 11 12 from torch import nnfrom torch.nn import initimport torchimport numpy as npimport sysimport torchvisionfrom torch.utils import datafrom torchvision import transformsimport pandas as pdimport matplotlib.pyplot as pltfrom IPython import displaytorch.set_default_tensor_type(torch.FloatTensor)
使用pandas
读取这两个文件。
1 2 3 4 5 6 7 8 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) bashPath = r".\house-price" testPath = bashPath + "/test.csv" trainPath = bashPath + "/train.csv" train_data = pd.read_csv(trainPath) test_data = pd.read_csv(testPath)
样本的第一个特征是Id,不使用它来训练。将所有的训练数据和测试数据的79个特征按样本连结。
1 all_features = pd.concat((train_data.iloc[:, 1 :-1 ], test_data.iloc[:, 1 :]))
预处理数据
对连续数值的特征做标准化(standardization):设该特征在整个数据集上的均值为\(\mu\) ,标准差为\(\sigma\) 。那么将该特征的每个值先减去\(\mu\) 再除以\(\sigma\) 得到标准化后的每个特征值。对于缺失的特征值,将其替换成该特征的均值,即为0。
1 2 3 4 numeric_features = all_features.dtypes[all_features.dtypes != 'object' ].index all_features[numeric_features] = all_features[numeric_features].apply( lambda x: (x - x.mean()) / (x.std())) all_features[numeric_features] = all_features[numeric_features].fillna(0 )
接下来将离散数值转成指示特征。举个例子,假设特征MSZoning里面有两个不同的离散值RL和RM,那么这一步转换将去掉MSZoning特征,并新加两个特征MSZoning_RL和MSZoning_RM,其值为0或1。如果一个样本原来在MSZoning里的值为RL,那么有MSZoning_RL=1且MSZoning_RM=0。
1 2 3 4 5 all_features = pd.get_dummies(all_features, dummy_na=True ) all_features = all_features.astype(np.float32) print (all_features.shape)
可以看到这一步转换将特征数从79增加到了331。
最后,通过values
属性得到NumPy格式的数据,并转成Tensor
,放在GPU上。
1 2 3 4 n_train = train_data.shape[0 ] train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float , device=device) test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float , device=device) train_labels = torch.tensor(train_data.SalePrice.values, dtype=torch.float , device=device).view(-1 , 1 )
训练模型
使用一个基本的线性回归模型和平方损失函数来训练模型。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 loss = torch.nn.MSELoss() def get_net (): num_inputs = train_features.shape[1 ] hidden_units_1 = 81 num_outputs = 1 net = nn.Sequential( nn.Linear(num_inputs, num_outputs) ) for params in net.parameters(): init.normal_(params, mean=0 , std=0.01 ) net = net.float () net.cuda() return net
下面定义比赛用来评价模型的对数均方根误差。给定预测值\(\hat y_1, \ldots, \hat y_n\) 和对应的真实标签\(y_1,\ldots, y_n\) ,它的定义为
\[
\sqrt{\frac{1}{n}\sum_{i=1}^n\left(\log(y_i)-\log(\hat y_i)\right)^2}.
\]
对数均方根误差的实现如下。
1 2 3 4 5 6 def log_rmse (net, features, labels ): with torch.no_grad(): clipped_preds = torch.max (net(features), torch.tensor(1.0 )) rmse = torch.sqrt(loss(clipped_preds.log(), labels.log())) return rmse.item()
下面的训练函数跟本章中前几节的不同在于使用了Adam优化算法。相对之前使用的小批量随机梯度下降,它对学习率相对不那么敏感。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 def train (net, train_features, train_labels, test_features, test_labels, num_epochs, learning_rate, weight_decay, batch_size ): train_ls, test_ls = [], [] dataset = data.TensorDataset(train_features, train_labels) train_iter = data.DataLoader(dataset, batch_size, shuffle=True ) optimizer = torch.optim.Adam(net.parameters(), lr = lr, weight_decay = weight_decay) for epoch in range (1 , num_epochs + 1 ): for X, y in train_iter: output = net(X) l = loss(output, y) optimizer.zero_grad() l.backward() optimizer.step() train_ls.append(log_rmse(net, train_features, train_labels)) if test_labels is not None : test_ls.append(log_rmse(net, test_features, test_labels)) return train_ls, test_ls
\(K\) 折交叉验证
\(K\) 折交叉验证被用来选择模型设计并调节超参数。下面实现了一个函数,它返回第i
折交叉验证时所需要的训练和验证数据。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 def get_k_fold_data (k, i, X, y ): fold_size = X.shape[0 ] // k X_train, y_train = None , None for j in range (k): idx = slice (j * fold_size, (j + 1 ) * fold_size) X_part, y_part = X[idx, :], y[idx] if j == i: X_valid, y_valid = X_part, y_part elif X_train is None : X_train, y_train = X_part, y_part else : X_train = torch.cat((X_train, X_part), dim=0 ) y_train = torch.cat((y_train, y_part), dim=0 ) return X_train, y_train, X_valid, y_valid
在\(K\) 折交叉验证中训练\(K\) 次并返回训练和验证的平均误差。
1 2 3 4 5 6 7 8 9 10 11 12 13 def k_fold (k, X_train, y_train, num_epochs, learning_rate, weight_decay, batch_size ): train_l_sum, valid_l_sum = 0 , 0 for i in range (k): data = get_k_fold_data(k, i, X_train, y_train) net = get_net() train_ls, valid_ls = train(net, *data, num_epochs, learning_rate, weight_decay, batch_size) train_l_sum += train_ls[-1 ] valid_l_sum += valid_ls[-1 ] if i == 0 : semilogy(range (1 , num_epochs + 1 ), train_ls, 'epochs' , 'rmse' , range (1 , num_epochs + 1 ), valid_ls, ['train' , 'valid' ]) print ('fold %d, train rmse %f, valid rmse %f' % (i, train_ls[-1 ], valid_ls[-1 ])) return train_l_sum / k, valid_l_sum / k
输出:
1 2 3 4 5 6 fold 0, train rmse 0.132562, valid rmse 0.143022 fold 1, train rmse 0.126497, valid rmse 0.150703 fold 2, train rmse 0.127167, valid rmse 0.151402 fold 3, train rmse 0.131500, valid rmse 0.130405 fold 4, train rmse 0.123478, valid rmse 0.159710 (0.12824077159166336, 0.1470484495162964)
模型选择
使用一组未经调优的超参数并计算交叉验证误差。改动这些超参数来尽可能减小平均测试误差。
1 2 3 4 5 6 7 k = 5 lr = 5 weight_decay = 0.05 num_epochs = 500 batch_size = 64 train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr, weight_decay, batch_size) print ((train_l, valid_l))
预测并在Kaggle提交结果
下面定义预测函数。在预测之前,使用完整的训练数据集来重新训练模型,并将预测结果存成提交所需要的格式。
1 2 3 4 5 6 7 8 9 10 def train_and_pred (train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size ): net = get_net() train_ls, _ = train(net, train_features, train_labels, None , None , num_epochs, lr, weight_decay, batch_size) semilogy(range (1 , num_epochs + 1 ), train_ls, 'epochs' , 'rmse' ) print ('train rmse %f' % train_ls[-1 ]) preds = net(test_features).cpu().detach().numpy() test_data['SalePrice' ] = pd.Series(preds.reshape(1 , -1 )[0 ]) submission = pd.concat([test_data['Id' ], test_data['SalePrice' ]], axis=1 ) submission.to_csv(bashPath+'/submission.csv' , index=False )
设计好模型并调好超参数之后,下一步就是对测试数据集上的房屋样本做价格预测。
1 train_and_pred(train_features, test_features, train_labels, test_data, num_epochs, lr, weight_decay, batch_size)
输出: